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Introduction

The Matlab programming language is parsed, code is interpreted in realtime. Languages like C++ and
Fortran are faster because they are compiled ahead of time into the computer’s native language. The
advantages of parsing in realtime are greater platform independence, robustness, and easier debugging.
The disadvantages are a significant loss in speed, increased overhead, and limited low-level control.

To compensate the speed loss, Matlab offers means to help speed up code. This article discusses these
and other strategies to improving the speed of Matlab code.

� Array preallocation

� Vectorization

� Inlining simple functions

Keep in mind that Matlab has gone through many versions and that it is available on many platforms.
Hence the fastest method on one system may not be the fastest on another. This article provides
methods that are generally fast, but makes no claim on what is the fastest.

Caution!

� Learn the language first: Optimization requires comfort with the syntax and functions of the
language. This article is not a tutorial on MATLAB.

� Use comments: Optimized code tends to be terse and cryptic. Help others and yourself by
remembering to comment.

� Don’t optimize code before its time: Before ever optimizing code, consider if it will be worth
the effort. If the code will soon be revised or extended, it will be rewritten anyway.

� Only optimize where necessary: Make sure the code is really a speed bottleneck. If it isn’t,
optimization only obfuscates the code.
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1 The Profiler

Matlab 5.0 and newer versions include a tool called the “profiler” that helps determine where the
bottlenecks are in a program. Consider the following function:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function result = example1(Count)

for k = 1:Count

result(k) = sin(k/50);

if result(k) < −0.9
result(k) = gammaln(k);

end

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To analyze the efficiency this function, first enable the profiler and clear any old profiler data:

>> profile on

>> profile clear

Now run the program. Change the input argument higher or lower so that it takes about a second.

>> example1(5000);

Then enter

>> profreport('example1')

The profiler generates an HTML report on the function and launches a browser window. Depending on
the system, profiler results may be a little different from this example.

Clicking the blue “example1” link gives more details:
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The most time-consuming lines are displayed, along with time, time percentage, and line number. The
most costly lines are the computations on lines 4 and 7.

2 Array Preallocation

Matlab’s matrix variables have the ability to dynamically augment rows and columns. For example,

>> a = 2

a =

2

>> a(2,6) = 1

a =

2 0 0 0 0 0

0 0 0 0 0 1

Matlab automatically resizes the matrix. Internally, the matrix data memory must be reallocated with
larger size. If a matrix is resized repeatedly–like within a for loop–this overhead becomes noticeable.
To avoid frequent reallocations, “preallocate” the matrix with the zeros command. Consider the code:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a(1) = 1;

b(1) = 0;

for k = 2:8000

a(k) = 0.99803 * a(k − 1) − 0.06279 * b(k − 1);

b(k) = 0.06279 * a(k − 1) + 0.99803 * b(k − 1);

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The profiler timed this code to take 0.47 seconds. After the for loop, both arrays are row vectors of
length 8000, thus to preallocate, create empty a and b row vectors each with 8000 elements.
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a = zeros(1,8000); % Preallocation

b = zeros(1,8000);

a(1) = 1;

b(1) = 0;

for k = 2:8000

a(k) = 0.99803 * a(k − 1) − 0.06279 * b(k − 1);

b(k) = 0.06279 * a(k − 1) + 0.99803 * b(k − 1);

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
With this modification, the code takes only 0.14 seconds (over three times faster). Preallocation is often
easy to do, in this case it was only necessary to determine the right preallocation size and add two lines.

What if the final array size can vary? One approach is to use the upper bound on the array size and
cut the excess after the loop:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a = zeros(1,10000); % Preallocate

count = 0;

for k = 1:10000

v = exp(rand(1)*rand(1));

if v > 0.5 % Conditionally add to array

count = count + 1;

a(count) = v;

end

end

a = a(1:count); % Trim the result

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The average run time of this program is 0.42 seconds without preallocation and 0.18 seconds with it.

Preallocation can also be done with cell arrays, using the cell command to create the desired size.
Using preallocation with a frequently resizing cell array is even more beneficial than with double arrays.
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3 Vectorization

To “vectorize” a computation means to replace parallel operations with vector operations. This strategy
often improves speed ten-fold. Good vectorization is a skill that must be developed; it requires comfort
with Matlab’s language and creativity.

3.1 Vectorized Computations

Many standard Matlab functions are “vectorized,” they can operate on an array as if the function had
been applied individually to every element.

>> sqrt([1,4;9,16])

ans =

1 2

3 4

>> abs([0,1,2,−5,−6,−7])

ans =

0 1 2 5 6 7

Consider the following function:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function d = minDistance(x,y,z)

% Find the min distance between a set of points and the origin

nPoints = length(x);

d = zeros(nPoints,1); % Preallocate

for k = 1:nPoints % Compute distance for every point

d(k) = sqrt(x(k)ˆ2 + y(k)ˆ2 + z(k)ˆ2);

end

d = min(d); % Get the minimum distance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
For every point, the distance between it and the origin is computed and stored in d. The minimum
distance is then found with min. To vectorize the distance computation, replace the for loop with
vector operations:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function d = minDistance(x,y,z)

% Find the min distance between a set of points and the origin

d = sqrt(x.ˆ2 + y.ˆ2 + z.ˆ2); % Compute distance for every point

d = min(d); % Get the minimum distance

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The modified code performs the distance computation with vector operations. The x, y and z arrays
are first squared using the per-element power operator, .^ (the per-element operators for multiplication
and division are .* and ./). The squared components are added with vector addition. Finally, the
square root of the vector sum is computed per element, yielding an array of distances.
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The first version of the minDistance program takes 0.73 seconds on 50000 points. The vectorized
version takes less than 0.04 seconds, more than 18 times faster.

Some useful functions for vectorizing computations:
min, max, repmat, meshgrid, sum, cumsum, diff, prod, cumprod, filter

3.2 Vectorized Logic

The previous section shows how to vectorize pure computation. Bottleneck code often involves condi-
tional logic. Like computations, Matlab’s logic operators are vectorized:

>> [1,5,3] < [2,2,4]

ans =

1 0 1

Two arrays are compared per-element. Logic operations return “logical” arrays with binary elements.

How is this useful? Matlab has a few powerful functions for operating on logical arrays:

� find: Find indices of nonzero elements.

� any: True if any element of a vector is nonzero (or per-column for a matrix).

� all: True if all elements of a vector are nonzero (or per-column for a matrix).

>> find([1,5,3] < [2,2,4])

ans =

1 3

>> find(eye(3) == 1)

ans =

1

5

9

The find function returns the indices where the vector logic operation returns true. In the first example,
1 < 2 is true, 5 < 2 is false, and 3 < 4 is true, so find reports that the first and third comparisons are
true. In the second example, find returns the indices where the identity matrix is equal to one. The
indices 1, 5, and 9 correspond to the diagonal of a 3 by 3 matrix.

The any and all functions are simple but occasionally very useful. For example, any(x(:) < 0)

returns true if any element of x is negative.
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Example 1: Removing elements

The situation often arises where array elements must be removed on some per-element condition. For
example, this code removes all NaN and infinite elements from an array x:

i = find(isnan(x) | isinf(x)); % Find bad elements in x

x(i) = []; % and delete them

Alternatively,

i = find(˜isnan(x) & ˜isinf(x)); % Find elements that are not NaN and not infinite

x = x(i); % Keep those elements

Example 2: Piecewise functions

Sometimes it is necessary to compute functions with piecewise definitions. For example, the sinc function
is defined everywhere but has a removable singularity at zero.

sinc(x) =

{
sin(x)/x, x 6= 0
1, x = 0

This code uses find with vectorized computation to handle the two cases separately:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function y = sinc(x)

% Computes the sinc function per−element for a set of x values.

y = ones(size(x)); % Set y to all ones, sinc(0) = 1

i = find(x ˜= 0); % Find nonzero x values

y(i) = sin(x(i)) ./ x(i); % Compute sinc where x ˜= 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Example 3: Drawing images with meshgrid

The meshgrid function takes two input vectors and converts them to matrices by replicating the first
over the rows and the second over the columns.

>> [x,y] = meshgrid(1:5,1:3)

x =

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

y =

1 1 1 1 1

2 2 2 2 2

3 3 3 3 3
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The matrices above work like a map for a width 5, height 3 image. For each pixel, the x-location can
be read from x and the y-location from y. This may seem like a gratuitous use of memory as x and y

simply record the column and row positions, but this is useful. For example, to draw an ellipse,

% Create x and y for a width 150, height 100 image

[x,y] = meshgrid(1:150,1:100);

% Ellipse with origin (60,50) of size 15 x 40

Img = sqrt(((x−60).ˆ2 / 15ˆ2) + ((y−50).ˆ2 / 40ˆ2)) > 1;

% Plot the image

imagesc(Img); colormap(copper);

axis image; axis off;

Drawing lines is almost the same, just a change in the formula.

[x,y] = meshgrid(1:150,1:100);

% The line y = x*0.8 + 20

Img = (abs((x*0.8 + 20) − y) > 1);

imagesc(Img); colormap(copper);

axis image; axis off;

Polar functions can be drawn by first converting x and y variables with the cart2pol function.

[x,y] = meshgrid(1:150,1:100);

[th,r] = cart2pol(x − 75,y − 50); % Convert to polar

% Spiral centered at (75,50)

Img = sin(r/3 + th);

imagesc(Img); colormap(hot);

axis image; axis off;

Example 4: Polynomial interpolation

Given n points x1, x2, x3, . . . xn and n corresponding function values y1, y2, y3, . . . yn, the coefficients
c0, c1, c2, . . . cn−1 of the interpolating polynomial of degree n − 1 can be found by solving the matrix
equation 

x1
n−1 x1

n−2 · · · x1
2 x1 1

x2
n−1 x2

n−2 · · · x2
2 x2 1

...
...

xn
n−1 xn

n−2 · · · xn
2 xn 1




cn−1

cn−2

...
c0

 =


y1

y2

...
yn


8



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function c = polyint(x,y)

% Given a set of points and function values x and y,

% computes the interpolating polynomial.

x = x(:); % Make sure x and y are both column vectors

y = y(:);

n = length(x); % n = Number of points

%%% Construct the left−hand side matrix %%%

xMatrix = repmat(x, 1, n); % Make an n by n matrix with x on every column

powMatrix = repmat(n−1:−1:0, n, 1); % Make another n by n matrix of exponents

A = xMatrix .ˆ powMatrix; % Compute the powers

c = A\y; % Solve matrix equation for coefficients

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The strategy to construct the left-hand side matrix is to first make two n by n matrices of bases and
exponents and then put them together using the per element power operator, .^ . The repmat function
(“replicate matrix”) is used to make the base matrix xMatrix and the exponent matrix powMatrix.

xMatrix =


x(1) x(1) · · · x(1)
x(2) x(2) · · · x(2)

...
...

x(n) x(n) · · · x(n)

 powMatrix =


n− 1 n− 2 · · · 0

n− 1 n− 2 · · · 0
...

...
n− 1 n− 2 · · · 0


The xMatrix is made by repeating the column vector x over the columns n times. Similarly, powMatrix
is a row vector with elements n−1, n−2, n−3, . . . , 0 repeated down the rows n times. The two matrices
could also have been created with [powMatrix, xMatrix] = meshgrid(n-1:-1:0, x).

This function is only an example; use the standard polyfit function for serious polynomial interpola-
tion. It is more general and algorithmically more efficient (see polyfit.m).
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4 Inlining Simple Functions

Every time an M-file function is called, Matlab incurs some overhead to find and parse the file and
to create a local workspace for the function’s local variables. Additionally, many M-file functions begin
with conditional code that checks the input arguments for errors or determines the mode of operation.

Of course, this overhead is negligible for a single function call. It should only be considered when the
function being called is an M-file, the function is “simple,” that is, implemented with only a few lines,
and it is called frequently within a loop.

For example, this code calls the M-file function median repeatedly from within a for loop:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Apply the median filter of size 5 to signal x

y = zeros(size(x)); % Preallocate

for k = 3:length(x)−2
y(k) = median(x(k−2:k+2));

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Given a 2500-sample array for x, the overall run time is 0.42 seconds.

“Inlining a function” means to replace a call to the function with the function code itself. Beware that
inlining should not be confused with Matlab’s “inline” function datatype.

Studying median.m (type edit median on the console) reveals that most of the work is done using the
built-in sort function. Thus the median call can be inlined:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Apply the median filter of size 5 to signal x

y = zeros(size(x)); % Preallocate

for k = 3:length(x)−2
tmp = sort(x(k−2:k+2));
y(k) = tmp(3); % y(k) = median(x(k−2:k+2));

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Now the overall run time for a 2500-sample input is 0.047 seconds, nearly 9 times faster. Notice that by
inlining median, it can be specifically tailored to evaluating 5-sample medians. (This is only an example
of inlining; if the Signal Processing Toolbox is available, y = medfilt1(x,5) is faster.)

A surprising number of Matlab’s functions are implemented as M-files, of which many can be inlined
in just a few lines. If called repeatedly, the following functions are worthwhile inlining:

� linspace, logspace

� mean, median, std, var
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� ifft, fft2, ifft2, ifftn, conv

� fliplr, flipud, meshgrid, repmat, rot90, sortrows

� ismember, setdiff, setxor, union, unique

� poly, polyval, roots

� sub2ind, ind2sub

(To view the code for linspace, type edit linspace on the console).

For example, ifft is implemented by simply calling fft and conj (see ifft.m). If x is a one-dimensional
array, y = ifft(x) can be inlined with y = conj(fft(conj(x)))/length(x).

Another example: b = unique(a) can be inlined with

b = sort(a(:)); b(find(b((1:end−1)')==b((2:end)'))) = [];

While repmat has the generality to operate on matrices, it is often only necessary to tile a vector or
just a scalar. To repeat a column vector y over the columns n times,

A = y(:,ones(1,n)); % Equivalent to A = repmat(y,1,n);

To repeat a row vector x over the rows m times,

A = x(ones(1,m),:); % Equivalent to A = repmat(x,m,1);

To repeat a scalar s into an m by n matrix,

A = s(ones(m,n)); % Equivalent to A = repmat(s,m,n);

This method avoids the overhead of calling an m-file function. It is never slower than repmat (critics
should note that repmat.m itself uses this method to construct mind and nind). For constructing
matrices with constant value, there are other efficient methods, for example, s+zeros(m,n).

Warning: Don’t go overboard. Inlining functions is only beneficial when the function is simple and
when it is called frequently. Doing it unnecessarily obfuscates the code.
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5 Integration

Numerical integration is usually done with quadrature formulas, which have the general form∫ b

a

f(x) dx ≈
∑

k

wkf(xk),

where the xk are called the nodes or abscissas and wk are the associated weights. Simpson’s rule is∫ b

a

f(x) dx ≈ h

3
[f(a) + 4f(a + h) + f(b)] , h =

b− a

2
.

Simpson’s rule is a quadrature formula with nodes a, a + h, b and node weights h
3 , 4h

3 , h
3 .

Matlab offers quad and quadl for quadrature in one dimension. These functions are robust and precise,
however, they are not very efficient. Both use an adaptive refinement procedure to reduce the number
of function calls. However, as quad and quadl are recursive M-file functions, the algorithmic overhead
is significant. Furthermore, adaptive refinement gains little from vectorization.

If an application requires approximating dozens of integrals, and if the integrand function can be
efficiently vectorized, using nonadaptive quadrature may improve speed.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

% Approximate Fourier series coefficients for exp(sin(x)ˆ6) for frequencies −20 to 20

for n = −20:20
c(n + 21) = quad(inline('exp(sin(x)ˆ6)*exp(−i*x*n)','x','n'),0,pi,1e−4,[],n);

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This code runs in 5.16 seconds. In place of quad, using Simpson’s composite rule with N = 199 nodes
yields results with comparable accuracy and enables vectorized computation. Since the integrals are all
over the same interval, the nodes and weights need only be constructed once.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

N = 199; h = pi/(N−1);
x = (0:h:pi).'; % Nodes

w = ones(1,N); w(2:2:N−1) = 4; w(3:2:N−2) = 2; w = w*h/3; % Weights

for n = −20:20
c(n + 21) = w * ( exp(sin(x).ˆ6).*exp(−i*x*n) );

end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
This version of the code runs in 0.02 seconds (200 times faster). The quadrature is performed by the
dot product multiplication with w. It can be further optimized by replacing the for loop with one
vector-matrix multiply:

[n,x] = meshgrid(−20:20, 0:h:pi);

c = w * ( exp(sin(x).ˆ6).*exp(−i*x.*n) );
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5.1 One-Dimensional Integration∫ b

a
f(x) dx is approximated by composite Simpson’s rule with

h = (b − a)/(N−1);
x = (a:h:b).';

w = ones(1,N); w(2:2:N−1) = 4; w(3:2:N−2) = 2; w = w*h/3;

I = w * f(x); % Approximately evaluate the integral

where N is an odd integer specifying the number of nodes.

A good higher-order choice is composite 4th-order Gauss-Lobatto [2], based on the approximation∫ 1

−1

f(x) dx ≈ 1
6f(−1) + 5

6f(− 1√
5
) + 5

6f( 1√
5
) + 1

6f(1).

N = max(3*round((N−1)/3),3) + 1; % Adjust N to the closest valid choice

h = (b − a)/(N−1);
d = (3/sqrt(5) − 1)*h/2;

x = (a:h:b).'; x(2:3:N−2) = x(2:3:N−2) − d; x(3:3:N−1) = x(3:3:N−1) + d;

w = ones(1,N); w(4:3:N−3) = 2; w([2:3:N−2,3:3:N−1]) = 5; w = w*h/4;

I = w * f(x); % Approximately evaluate the integral

The number of nodes N must be such that (N − 1)/3 is an integer. If not, the first line adjusts N to
the closest valid choice. It is usually more accurate than Simpson’s rule when f has six continuous
derivatives, f ∈ C6(a, b).

A disadvantage of this nonadaptive approach is that the accuracy of the result is only indirectly con-
trolled by the parameter N. To guarantee a desired accuracy, either use a generously large value for N

or if possible determine the error bounds [4, 5]

Simpson’s rule error ≤ (b− a)h4

180
max

a≤η≤b

∣∣∣f (4)(η)
∣∣∣ provided f ∈ C4(a, b),

4 th -order Gauss-Lobatto error ≤ 27(b− a)h6

56000
max

a≤η≤b

∣∣∣f (6)(η)
∣∣∣ provided f ∈ C6(a, b),

where h = b−a
N−1 . Note that these bounds are valid only when the integrand is sufficiently differentiable: f

must have four continuous derivatives for the Simpson’s rule error bound, and six continuous derivatives
for Gauss-Lobatto.

For most purposes, composite Simpson’s rule is a sufficient default choice. Depending on the integrand,
other choices can improve accuracy:

� Use higher-order quadrature formulas if the integrand has many continuous derivatives.

� Use lower-order if the integrand function is not smooth.

� Use the substitution u = 1
1−x or Gauss-Laguerre quadrature for infinite integrals like

∫∞
0

.
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5.2 Multidimensional Integration

An approach for evaluating double integrals of the form
∫ b

a

∫ d

c
f(x, y) dy dx is to apply one-dimensional

quadrature to the outer integral
∫ b

a
F (x) dx and then for each x use one-dimensional quadrature over

the inner dimension to approximate F (x) =
∫ d

c
f(x, y) dy. The following code does this with composite

Simpson’s rule with Nx×Ny nodes:

%%% Construct Simpson nodes and weights over x %%%

h = (b − a)/(Nx−1);
x = (a:h:b).';

wx = ones(1,Nx); wx(2:2:Nx−1) = 4; wx(3:2:Nx−2) = 2; wx = w*h/3;

%%% Construct Simpson nodes and weights over y %%%

h = (d − c)/(Ny−1);
y = (c:h:d).';

wy = ones(1,Ny); wy(2:2:Ny−1) = 4; wy(3:2:Ny−2) = 2; wy = w*h/3;

%%% Combine for two−dimensional integration %%%

[x,y] = meshgrid(x,y); x = x(:); y = y(:);

w = wy.'*wx; w = w(:).';

I = w * f(x,y); % Approximately evaluate the integral

Similarly for three-dimensional integrals, the weights are combined with

[x,y,z] = meshgrid(x,y,z); x = x(:); y = y(:); z = z(:);

w = wy.'*wx; w = w(:)*wz; w = w(:).';

When the integration region is complicated or of high dimension, Monte Carlo integration techniques
are appropriate. The disadvantage with these statistical approaches is that accuracy increases with only
the square root of the number of points. Nevertheless, the basic Monte Carlo idea is straightforward
and of practical value. Suppose that N points, x1, x2, . . . , xN , are uniformly randomly selected in a
multidimensional volume Ω. Then ∫

Ω

f dV ≈
∫
Ω

dV

N

N∑
n=1

f(xn).

To integrate a complicated volume W that is difficult to sample uniformly, find an easier volume Ω that
contains W and can be sampled [3]. Then∫

W

f dV =
∫
Ω

f · χW dV ≈
∫
Ω

dV

N

N∑
n=1

f(xn)χW (xn), χW (x) =

{
1, x ∈ W,

0, x /∈ W.

χW (x) is the indicator function of W : χW (x) = 1 when x is within volume W and χW (x) = 0 otherwise.
Multiplying the integrand by χW sets contributions from outside of W to zero.

For example, consider finding the center of mass of the shape W defined by cos
(
2
√

x2 + y2
)

x ≤ y

and x2 + y2 ≤ 4. Given the integrals M =
∫

W
dA, Mx =

∫
W

xdA, and My =
∫

W
y dA, the center of
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mass is (Mx

M ,
My

M ). The region is contained in the rectangle Ω defined by −2 ≤ x ≤ 2 and −2 ≤ y ≤ 2.
The following code estimates M , Mx, and My:

%%% Uniformly randomly sample points (x,y) in Omega %%%

x = 4*rand(N,1) − 2;

y = 4*rand(N,1) − 2;

%%% Restrict the points to region W %%%

i = find(cos(2*sqrt(x.ˆ2 + y.ˆ2)).*x <= y & x.ˆ2 + y.ˆ2 <= 4);

x = x(i); y = y(i);

%%% Approximately evaluate the integrals %%%

area = 4*4; % The area of rectangle Omega

M = (area/N) * length(x);

Mx = (area/N) * sum(x);

My = (area/N) * sum(y);

Region W sampled with N = 104.

The center of mass (the red X) is

approximately (0.47, 0.67).

More generally, if W is a two-dimensional region contained in the rectangle defined by a ≤ x ≤ b and
c ≤ y ≤ d, the following code approximates

∫
W

f dA:

x = a + (b−a)*rand(N,1);
y = c + (d−c)*rand(N,1);
i = find(indicatorW(x,y));

x = x(i); y = y(i);

area = (b−a)*(d−c);
I = (area/N) * sum(f(x,y)); % Approximately evaluate the integral

where indicatorW(x,y) is the indicator function χW (x, y) for region W .

Monte Carlo integration is a study of its own, see for example [1] for refinements and variations.
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6 Referencing Operations

Referencing in Matlab is varied and powerful enough to deserve a section of discussion. Good under-
standing of referencing enables vectorizing a broader range of programming situations.

6.1 Subscripts vs. Indices

Subscripts are the most common method used to refer to matrix elements, for example, A(3,9) refers to
row 3, column 9. Indices are an alternative referencing method. Consider a 10×10 matrix A. Internally,
Matlab stores the matrix data linearly as a one-dimensional, 100-element array of data.

1 11 21 · · · 81 91
2 12 22 · · · 82 92
3 13 23 · · · 83 93
...

...
10 20 30 · · · 90 100


An index refers to an element’s position in this one-dimensional array. For example, A(83) refers to
the element on row 3, column 9.

Conversion between subscripts and indices can be done with the sub2ind and ind2sub functions.
However, because these are m-file functions rather than fast built-in operations, it is much more efficient
to compute conversions directly. For a two-dimensional matrix A of size M by N, the conversion between
subscript (i,j) and index (index):

A(i,j) ↔ A(i + (j-1)*M)

A(index) ↔ A(rem(index-1,M)+1, floor(index/M)+1)

Indexing extends to N-D matrices as well, with indices increasing first through the columns, then
through the rows, through the third dimension, and so on. Subscript notation extends intuitively,

A(. . . , dim4, dim3, row, col).

6.2 Vectorized Subscripts

It is useful to work with submatrices rather than individual elements. This is done with a vector of
indices or subscripts. If A is a two-dimensional matrix, a vector subscript reference has the syntax

A(rowv, colv)

where rowv is a vector of rows with M elements and colv is a vector of columns with N elements. Both
may be of any length and their elements may be in any order. If either is a matrix, it is reshaped to a
vector. There is no difference between using row vectors or column vectors in vector subscripts.

On the right-hand side (rhs) of an operation, a vector subscript reference returns a submatrix of elements
of size M×N:
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
A(rowv(1), colv(1)) A(rowv(1), colv(2)) A(rowv(1), colv(3)) · · · A(rowv(1), colv(N))
A(rowv(2), colv(1)) A(rowv(2), colv(2)) A(rowv(2), colv(3)) · · · A(rowv(2), colv(N))

...
...

A(rowv(M), colv(1)) A(rowv(M), colv(2)) A(rowv(M), colv(3)) · · · A(rowv(M), colv(N))


If the vector subscripted matrix is on the left-hand side (lhs), the rhs result must M×N or scalar size.
If any elements in the destination reference are repeated, for example, this ambiguous assignment of
A(1,2) and A(2,2),

A([1,2],[2,2]) = [1,2;3,4][
A(1, 2) A(1, 2)
A(2, 2) A(2, 2)

]
=

[
1 2
3 4

]
it is the value in the source array with the greater index that dominates.

>> A = zeros(2); A([1,2],[2,2]) = [1,2;3,4]

A =

0 2

0 4

Vector subscript references extend intuitively in higher dimensions.

6.3 Vector Indices

Multiple elements can also be referenced with vector indices.
A(indexv)

where indexv is an array of indices. On the rhs, a vector index reference returns a matrix the same
size as indexv. For example, if indexv is a 3× 4 matrix, A(indexv) is the 3× 4 matrix

A(indexv) =

 A(indexv(1, 1)) A(indexv(1, 2)) A(indexv(1, 3)) A(indexv(1, 4))
A(indexv(2, 1)) A(indexv(2, 2)) A(indexv(2, 3)) A(indexv(2, 4))
A(indexv(3, 1)) A(indexv(3, 2)) A(indexv(3, 3)) A(indexv(3, 4))


While vector subscripts are limited to referring to block-shaped submatrices, vector indices can refer to
any shape.

If a vector index reference is on the lhs, the rhs must return a matrix of the same size as indexv or a
scalar. As with vector subscripts, ambiguous duplicate assignments use the later value assigned.

>> A = zeros(2); A([3,4,3,4]) = [1,2,3,4]

A =

0 3

0 4
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6.4 Reference Wildcards

Using the wildcard, :, in a subscript refers to an entire row or column. For example, A(:,1) refers
to every row in column one–the entire first column. This can be combined with vector subscripts,
A([2,4],:) refers to the second and fourth rows.

When the wildcard is used in a vector index, the entire matrix is referenced. On the rhs, this always
returns a column vector.

A(:) = column vector
This is frequently useful: for example, if a function input must be a row vector, the user’s input can be
quickly reshaped into row vector with A(:).’ (make a column vector and transpose to a row vector).

A(:) on the lhs assigns all the elements of A, but does not change its size. For example, A(:) = 8

changes all elements of matrix A to 8.

6.5 Deleting Submatrices with [ ]

Elements in a matrix can be deleted by assigning the empty matrix. For example, A([3,5]) = [ ]

deletes the third and fifth element from A. If this is done with index references, the matrix is reshaped
into a row vector.

It is also possible to delete with subscripts if all but one subscript are the wildcard. A(2,:) = [ ]

deletes the second row. Deletions like A(2,1) = [ ] or even A(2,1:end) = [ ] are illegal.

7 Miscellaneous Tricks

7.1 Bound a value without if statements

To clip/bound/saturate a value to within a range, the straightforward way to code this is

if x < lowerBound

x = lowerBound;

elseif x > upperBound

x = upperBound;

end

Unfortunately, this is slow. A faster method is to use the min and max functions:

x = max(x,lowerBound); % Bound elements from below, x >= lowerBound

x = min(x,upperBound); % Bound elements from above, x <= upperBound

It also works per-element if x a matrix of any size.
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7.2 Convert any array into a column vector

It is often useful to force an array to be a column vector, for example, when writing a function expecting
a column vector as an input. This simple trick will convert the input array to a column vector if the
array is a row vector, a matrix, an N-d array, or already a column vector.

x = x(:); % convert x to a column vector

By following this operation with a transpose .’, it is possible to convert an array to a row vector.

7.3 Flood filling

Flood filling, like the “bucket” tool in image editors, can be elegantly written as a recursive function:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function I = flood1(I,c,x,y)

% Flood fills image I from point (x,y) with color c.

c2 = I(y,x);

I(y,x) = c;

if x > 1 & I(y,x−1) == c2 & I(y,x−1) ˜= c, I = flood1(I,c,x−1,y); end

if x < size(I,2) & I(y,x+1) == c2 & I(y,x+1) ˜= c, I = flood1(I,c,x+1,y); end

if y > 1 & I(y−1,x) == c2 & I(y−1,x) ˜= c, I = flood1(I,c,x,y−1); end

if y < size(I,1) & I(y+1,x) == c2 & I(y+1,x) ˜= c, I = flood1(I,c,x,y+1); end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Being a highly recursive function, this is inefficient in Matlab. The following code is faster:
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

function I = flood2(I,c,x,y)

% Flood fills image I from point (x,y) with color c.

LastFlood = zeros(size(I));

Flood = LastFlood;

Flood(y,x) = 1;

Mask = (I == I(y,x));

FloodFilter = [0,1,0; 1,1,1; 0,1,0];

while any(LastFlood(:) ˜= Flood(:))

LastFlood = Flood;

Flood = conv2(Flood,FloodFilter,'same') & Mask;

end

I(find(Flood)) = c;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The key is the conv2 two-dimensional convolution function. Flood filling a 40×40-pixel region takes
1.168 seconds with flood1 and 0.067 seconds with flood2.
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7.4 Find the min/max of a matrix or N-d array

Given a matrix input (with no other inputs), the min and max functions operate along the columns,
finding the extreme element in each column. Often it is more useful to find the extreme element of the
entire matrix. It is possible to repeat the min or max function on the column extremes; min(min(A))
to find the minimum of a two-dimensional matrix A. This method uses only one call to min/max (using
the convert to column vector trick) and determines the extreme element’s location:

[MinValue, MinIndex] = min(A(:)); % Find the minimum element in A

% The minimum value is MinValue, the index is MinIndex

MinSub = ind2sub(size(A), MinIndex); % Convert MinIndex to subscripts

The minimum element is A(MinIndex) or A(MinSub(1), MinSub(2), ...) as a subscript reference.
(Similarly, replace min with max for maximum value.)

7.5 Vectorized use of set on GUI objects

A serious graphical user interface (GUI) can have dozens of objects like text labels, buttons, and sliders.
These objects must all be initialized with the uicontrol function with lengthy property names. For
example, to define three edit boxes with white text background and left text alignment:

uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05], ...

'HorizontalAlignment', 'left', 'Style', 'edit', 'BackgroundColor', [1,1,1]);

This is excessive for just three edit boxes. A vectorized call to set can reduce the wordiness:

h(1) = uicontrol('Units', 'normalized', 'Position', [0.1,0.9,0.7,0.05]);

h(2) = uicontrol('Units', 'normalized', 'Position', [0.1,0.8,0.7,0.05]);

h(3) = uicontrol('Units', 'normalized', 'Position', [0.1,0.7,0.7,0.05]);

set(h, 'HorizontalAlignment', 'left', 'Style', 'edit','BackgroundColor', [1,1,1]);
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8 Going Further

In a coding situation that cannot be optimized any further, keep in mind that Matlab is intended as a
prototyping language. In some cases, an appropriate solution is the use of MEX-files (Matlab EXternal
interface files). With a C or Fortran compiler, it is possible to produce fast functions that interface
with Matlab. The speed improvement over the equivalent m-file program can easily be ten-fold. See
the MathWorks MEX-files Guide

http://www.mathworks.com/support/tech-notes/1600/1605.html

Warning: Writing MEX-files requires solid understanding of Matlab and comfort with C or Fortran,
and typically more time to develop than M code. Nevertheless, it is a possibility for improving speed.

Good luck and happy coding.
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